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Exploring data with graphs 

Self-test answers 

 

• Go back to the Facebook narcissism data from the earlier tutorial. Plot a 
graph that shows the pattern in the data using only a line. 

• Plot different coloured lines for the different types of rating (cool, 
fashionable, attractive, glamorous). 

• Add a layer displaying the raw data as points. 
• Add labels to the axes. 

We can add a line using the geom_line() command. You might have, therefore, executed the 
following command: 

graph + geom_line() 

The resulting graph is a mess, because it has connected every single data point.  
 

 
 
This is not what we wanted, we wanted a line to summarize the data.  Perhaps it will help to 
have different lines for each type of rating? We can specify this in the same way as for 
geom_point(), by executing: 

graph + geom_line(aes(colour = Rating_Type)) 

You should see this graph: 
 



DISCOVERING STATISTICS USING R 

PROFESSOR ANDY P FIELD  2 

 
This hasn’t helped much either. What we actually need is a summary line, or smoother. We 
can use geom_smooth() to do this: 

graph + geom_smooth(aes(colour = Rating_Type)) 

Note that we have continued to specify that we want different colours to represent different 
types of rating. The resulting plot should look like this: 

 
 
Note that by default ggplot2 fits a curved line. The shaded areas are the 95% confidence 
intervals around these lines. If we want a straight rather than curved line, we simply use the 
method command to specify a linear model or lm for short: 

graph + geom_smooth(aes(colour = Rating_Type), method = lm) 

The resulting plot looks like this: 
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Note that again the shaded areas are the 95% confidence intervals. If we want to remove 
these intervals, we can do so by specifying se = F (short for standard error = false): 

graph + geom_smooth(aes(colour = Rating_Type), method = lm, se = F) 

The resulting plot is: 
 

 
 
We now have nice summary lines for each type of question. We can also include the raw data 
by using our earlier geom_point() command (note I’ve kept the jitter so that there is no 
overplotting): 

graph + geom_point(aes(colour = Rating_Type), position = "jitter") + 
geom_smooth(aes(colour = Rating_Type), method = lm, se = F) 

You should see this plot: 
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As a finishing touch we could add some labels using the labs() command to the axes that give 
a more helpful description of the variables: 

graph + geom_point(aes(colour = Rating_Type), position = "jitter") + 
geom_smooth(aes(colour = Rating_Type), method = lm, se = F) + labs(x = "Narcissism 
(NPQC)", y = "Facebook Picture Rating", colour = "Rated Attribute") 

We have a finished graph: 

 
 

 

• What does a histogram show? 

A histogram is a graph in which values of observations are plotted on the horizontal axis, and 
the frequency with which each value occurs in the data set is plotted on the vertical axis. 

 

• Remove the outlier and replot the histogram. 

An outlier is an extreme score, so the easiest way to find it is to sort the data: 

festivalData<-festivalData[order(festivalData$day1),] 
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This command takes festivalData and sorts it by the variable day1. All we have to do now is 
to look at the last case (i.e. the largest value of day1) and change it. The easiest way to edit 
the case is to start R Commander: 

library(Rcmdr) 

 

Click on  to open the select the Select Data Set dialog box. In this box, click on 
festivalData and then  to open the data. 

 
Click on  to open the data editor window: 
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Notice that the last case (case 611) is 20.02. This is clearly wrong. Perhaps we might go back 
to the original data and find that it has been mistyped and should be 2.02. Double click on the 
cell and change 20.02 to 2.02. Close the window and the new value will be saved in the 
dataframe. To replot the histogram, execute the same commands as in the book: 

festivalHistogram <- ggplot(festivalData, aes(day1)) + opts(legend.position="none") 

festivalHistogram + geom_histogram(binwidth = 0.4) + labs(x = "Hygiene (Day 1 of 
Festival)", y = "Frequency") 

The resulting histogram looks like this: 
 

 

 

• Produce boxplots for the day 2 and day 3 hygiene scores and interpret 
them. 

 
The code you need is simply: 
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festivalBoxplot <- ggplot(festivalData, aes(gender, day2)) 

festivalBoxplot + geom_boxplot() + labs(x = "Gender", y = "Hygiene (Day 2 of 
Festival)") 

 

festivalBoxplot <- ggplot(festivalData, aes(gender, day3)) 

festivalBoxplot + geom_boxplot() + labs(x = "Gender", y = "Hygiene (Day 3 of 
Festival)") 

The boxplot for the day 2 data should look like this: 

 
Note that, as for day 1, the females are slightly more fragrant than males (look at the median 
line). However, if you compare these to the day 1 boxplots (in the book), scores are getting 
lower (i.e. people are getting less hygienic). In the males there are now more outliers (i.e. a 
rebellious few who have maintained their sanitary standards). 

The boxplot for the day 3 data should look like this: 

 

 
Note that, compared to day 1 and day 2, the females are getting more like the males (i.e. 
smelly). However, if you look at the top whisker, this is much longer for the females. In other 
words, the top 25% of females are more variable in how smelly they are compared to males. 
Also, the top score is higher than for males. So, at the top end females are better at 
maintaining their hygiene at the festival compared to males. Also, the box is longer for 
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females, and although both boxes start at the same score, the top edge of the box is higher in 
females, again suggesting that above the median score more women are achieving higher 
levels of hygiene than men. Finally, note that for both days 1 and 2, the boxplots have 
become less symmetrical (the top whiskers are longer than the bottom whiskers). On day 1 
(see the book chapter), which is symmetrical, the whiskers on either side of the box are of 
equal length (the range of the top and bottom 25% of scores is the same); however, on days 
2 and 3 the whisker coming out of the top of the box is longer than that at the bottom, which 
shows that the distribution is skewed (i.e. the top 25% of scores is spread out over a wider 
range than the bottom 25%). 

 

 

• Change the geom for the error bar to ‘errorbar’ and change its colour to 
red. Replot the graph. 

• Plot the graph again but with bootstrapped confidence intervals. 

 

bar <- ggplot(chickFlick, aes(film, arousal)) 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", colour = "Red",  width = 
0.2) + labs(x = "Film", y = "Mean Arousal")  

 

bar <- ggplot(chickFlick, aes(film, arousal)) 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_boot, geom = "errorbar", colour = "Red", width = 0.2) 
+ labs(x = "Film", y = "Mean Arousal")  

 

  
Normal Confidence Interval Bootstrap Confidence Interval 

 

 

• Restructure the data to a new dataframe called textMessages that is in 
long format. Use the factor() command  to convert the ‘Time’ variable to a 
factor with levels called ‘Baseline’ and ‘6 Months’. 

First we need to create a variable that gives each case an id so that we have a unique 
identifier for the reshape command: 

textData$id = row(textData[1]) 

To create the new dataframe called textMessage, we execute the following command: 
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textMessages<-melt(textData, id = c("id", "Group"), measured = c("Baseline", 
"Six_months")) 

names(textMessages)<-c("id", "Group", "Time", "Grammar_Score") 

Within this command, we specify the data to be reshaped (textData), the variables that 
remain constant for a participant (id = c("id", "Group")), and the variables that vary over time 
for a participant (measured = c("Baseline", "Six_months")).1 The names() function then just 
gives the new columns some more helpful names: it names the variable that now contains the 
scores for each participant "Grammar_Score", and the variable that represents the different 
points in time "Time". 

We can now change the newly created variable Time so that it is treated as a factor, and 
provide labels for the two levels of this variable: 

textMessages$Time<-factor(textMessages$Time, labels = c("Baseline", "6 Months")) 

The data before and after reshaping are presented below: 

 

 

Before reshaping (wide format) After reshaping (long format) 

 
 

 

• Use what you have learnt to repeat the text message data plot but to also 
have different symbols for text messagers and controls and different 
types of lines. 

The commands to execute are: 
 

line <- ggplot(textMessages, aes(Time, Grammar_Score, colour = Group)) 

line + stat_summary(fun.y = mean, geom = "point", aes(shape = Group), size = 4) + 
stat_summary(fun.y = mean, geom = "line", aes(group= Group, linetype = Group)) + 
stat_summary(fun.data = mean_cl_boot, geom = "errorbar", width = 0.2) + labs(x = 
"Time", y = "Mean Grammar Score", colour = "Group") 

                                                        
1 You can also use the reshape command as follows: 

textMessages = reshape(textData, idvar = c("id", "Group"), varying = c("Baseline", 
"Six_months"), v.names = "Grammar_Score", timevar = "Time", times = c(0:1), direction 
= "long") 
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The main differences are that when I specified the means using the point geom, I added an 
aesthetic that sets the shape to be equal to Group (which means that a different shape will 
be used for each group). So, 

stat_summary(fun.y = mean, geom = "point") 

from the example in the book, became 

stat_summary(fun.y = mean, geom = "point", aes(shape = Group)) 

(To create the diagram below I also added size = 4 to make the symbols bigger.) Similarly, I 
added a linestyle aesthetic when I defined the line geom. So, 

stat_summary(fun.y = mean, geom = "line", aes(group= Group)) 

from the example in the book, became 

stat_summary(fun.y = mean, geom = "line", aes(group= Group, linetype = Group)) 

The end result is: 
 

 
Error bar graph of the mean grammar score over six months in children who were allowed to text 
message versus those who were forbidden 

Note that both the symbol and the line style changes as a function of the variable Group 
(i.e. text messagers and controls have different symbols representing their means, different 
types of lines, and different coloured lines). 
  

Oliver Twisted 

Please Sir, can I have some more … complicated stuff? 
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To check for outliers we can look at z-scores. In the book chapter we wrote a nice little 
function to display the percentage of z-scores that fell outside of the standard 

limits. This section explains how that function works. 
Z-scores are simply a way of standardizing a data set by expressing the 

scores in terms of a distribution with a mean of 0 and a standard deviation of 
1. In doing so we can use benchmarks that we can apply to any data set 
(regardless of what its original mean and standard deviation were). To convert 
a score into a z-score we simply take each score (X) and subtract the mean of 

all scores (𝑋) from it and divide by the standard deviation of all scores (s). 
We can get R to do this conversion for us using the mean() and sd() functions to compute 

the mean and sd of the data: 

zvariable<-(variable-mean(variable, na.rm = TRUE))/sd(variable, na.rm = TRUE) 

This command creates a variable called zvariable, which is the original variable with the 
mean subtracted, computed using mean(variable, na.rm = TRUE), and divided by the 
standard deviation, computed using sd(variable, na.rm = TRUE). It’s important to include 
na.rm  = TRUE to eliminate missing values before the mean and standard deviation are 
computed. 

To look for outliers we could use these z-scores and count how many fall within certain 
important limits. If we take the absolute value (i.e., we ignore whether the z-score is positive 
or negative) then in a normal distribution we’d expect about 5% to have absolute values 
greater than 1.96 (we often use 2 for convenience), 1% to have absolute values greater than 
2.58, and none to be greater than about 3.29. We can create variables that will return the 
value TRUE if the z-score is greater than these cut-off points as follows: 

outlier95<-abs(zvariable) >= 1.96 

outlier99<-abs(zvariable) >= 2.58 

outlier999<-abs(zvariable) >= 3.29 

The first command creates a variable called outlier95 that will be TRUE if the absolute value 
of a z-score (which we computed earlier and stored in the variable zvariable) is greater than 
or equal to 1.96. We use the abs() function to give us the absolute value. To be clear, 
abs(zvariable) >= 1.96 means ‘the absolute value of the score in the variable called zvariable 
is greater than or equal to 1.96’. The next two commands do a similar thing, creating 
variables outlier99 and outlier999 that will return the value TRUE if the absolute value of the 
z-score is greater or equal to 2.58 and 3.29, respectively. 

We can now use these values to calculate the percentage of outliers we have. First we need 
to know the number of cases that we have. We can use the length() function to calculate this 
value: 

ncases<-length(na.omit(zvariable)) 

This command creates a variable called ncases, which is the value of the length of the 
variable zvariable. Note that we enclose zvariable in the function na.omit(); this has the 
effect of deleting any missing cases (and we don’t want to include missing cases when we 
calculate the length of the variable). The length() function returns the number of items within 
the variable – in other words, the number of cases. Therefore, this command gives us the 
total number of z-scores. 

We now need to know how many of the z-scores were greater than our cut-off values. This 
information is stored in the variables outlier95, outlier99 and outlier999. Essentially, we 
want to count the number of TRUE responses within these variables (remember that when 
the response is TRUE it means that the absolute value of the z-score was greater than the 
cut-off). A simple way to do this, is to use the subset() function to filter out the TRUE 
responses and then count them using the length() function: 

 

nTrue95<-length(subset(outlier95, outlier95 == TRUE)) 

nTrue99<-length(subset(outlier99, outlier99 == TRUE)) 

nTrue999<-length(subset(outlier999, outlier999 == TRUE)) 
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These commands first create a subset of the variables (outlier95, outlier99 and outlier999, 
respectively) by specifying that cases be retained if their value is equal to TRUE. The length() 
function then counts the number of cases. Therefore, the new variables nTrue95, nTrue99, 
and nTrue999 tell us the number of TRUE responses (i.e., the number of cases with absolute 
z-scores greater than the cut off) for each cut-off. 

It’s fairly easy then to compute the number of true responses as a percentage of the number 
of total cases: 

percent95<-round(100* nTrue95)/ncases, 2) 

percent99<-round(100* nTrue99)/ncases, 2) 

percent999<-round(100* nTrue999)/ncases, 2) 

In each case we create a variable that is the number of TRUE responses (i.e., the number of 
cases with absolute z-scores greater than the cut-off), divided by the total number of cases 
(ncases) multiplied by 100 to get the percentage. In all cases we use the round() function to 
round the result to 2 decimal places (which is sufficient) 

The final bit of the function specifies some text to be printed around each of these 
percentages (so that the output looks pretty): 

cat("Absolute z-score greater than 1.96 = ", percent95, "%", "\n") 

cat("Absolute z-score greater than 2.58 = ",  percent99, "%", "\n") 

cat("Absolute z-score greater than 3.29 = ",  percent999, "%", "\n") 

The function in its completed form looks like this: 
 

outlierSummary<-function(variable, digits = 2){ 

 zvariable<-(variable-mean(variable, na.rm = TRUE))/sd(variable, na.rm = TRUE) 

 outlier95<-abs(zvariable) >= 1.96 

 outlier99<-abs(zvariable) >= 2.58 

 outlier999<-abs(zvariable) >= 3.29 

 ncases<-length(na.omit(zvariable)) 

 percent95<-round(100*length(subset(outlier95, outlier95 == TRUE))/ncases, 
digits) 

 percent99<-round(100*length(subset(outlier99, outlier99 == TRUE))/ncases, 
digits) 

 percent999<-round(100*length(subset(outlier999, outlier999 == TRUE))/ncases, 
digits) 

 cat("Absolute z-score greater than 1.96 = ", percent95, "%", "\n") 

 cat("Absolute z-score greater than 2.58 = ",  percent99, "%", "\n") 

 cat("Absolute z-score greater than 3.29 = ",  percent999, "%", "\n") 

} 

 
The function doesn’t go through as many steps as I have just explained (it computes the 

percentages more directly), but I wanted to take you through each step systematically. The 
other thing to note is that we have allowed users to specify how many decimal places they 
want in the output the default is 2, but if the user inputs a value then they’ll get a different 
amount. For example, executing: 

 

outlierSummary(festivalData$day2, 3) 

returns 3 decimal places and: 

outlierSummary(festivalData$day2, 1) 

would return 1 decimal place. 
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Smart Alex’s solutions 

Task 1 

• Using the data from Chapter 3 (which you should have saved, but if you didn’t, re-
enter it) plot and interpret the following graphs: 

o An error bar chart showing the mean number of friends for students and 
lecturers. 

o An error bar chart showing the mean alcohol consumption for students and 
lecturers. 

o An error line chart showing the mean income for students and lecturers. 
o An error line chart showing the mean neuroticism for students and lecturers. 
o A scatterplot (with regression lines) of alcohol consumption and neuroticism 

grouped by lecturer/student. 

 
An error bar chart showing the mean number of friends for students and lecturers  
 
I have called this data file Lecturer Data.dat; if you have called the data file something 
different you need to adapt the code in this section accordingly, or, alternatively, you could 
rename your data file. 

First of all, set your working directory to be the location of the data file. Then create a 
dataframe called lecturerData by executing the following command:  

lecturerData = read.delim("Lecturer Data.dat", header = TRUE) 

Tell R that the variable ‘job’ is a factor: 

lecturerData$job<-factor(lecturerData$job, levels=c(1:2), labels = c("lecturer", 
"student")) 

To plot the mean number of friends (y-axis – as this is the thing we have measured) for 
students and lecturers (x-axis), we need to create a plot object by executing the following 
command: 

bar < - ggplot(lecturerData, aes(job, friends)) 

Executing the following command will create an error bar chart (I have put in red error bars, 
but you can use whichever colour you prefer) displaying the mean number of friends (and the 
95% confidence interval of those means) for students and lecturers as white bars with a black 
outline with nicely labeled axes: 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", colour = “Red”, width = 
0.2) + labs(x = "Group", y = "Mean Number of Friends") 

 
The error bar chart will look like this: 
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We can conclude that, on average, students had more friends than lecturers. 

 
An error bar chart showing the mean alcohol consumption for students and lecturers  
 
To plot the mean alcohol consumption (y-axis) for students and lecturers (x-axis), we first 
need to create a plot object by executing the following command: 

bar < - ggplot(lecturerData, aes(job, alcohol)) 

To create an error bar chart displaying the mean alcohol consumption (and the 95% 
confidence interval of those means) for students and lecturers as white bars with a black 
outline with nicely labeled, axes execute the following command: 

bar + stat_summary(fun.y = "mean", geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", colour = "Red", width = 
0.2) + labs(x = "Job", y = "Mean Alcohol Consumption") 

 
The error bar chart will look like this: 
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We can conclude that, on average, students and lecturers drank similar amounts, but the 
error bars tell us that the mean is a better representation of the population for students than 
for lecturers (there is more variability in lecturers’ drinking habits compared to students’). 

 
An error line chart showing the mean income for students and lecturers  
 
First create the plot object and define the variables that we want to plot as aesthetics: 

line <- ggplot(lecturerData, aes(job, income)) 

I have called the object line. The contents of this command specify the dataframe to be used 
(lecturerData) and set job to be plotted on the x-axis, and income to be plotted on the y-axis.  

Executing the command below will create an error line graph of the mean income for 
students and lecturers. The command uses stat_summary() to create the mean and the 
aesthetics are set so that the group means are connected with a red dashed line and error 
bars are set at a width of 0.2. Labels will be added to the x (Group) and y axis (Income): 

 

line + stat_summary(fun.y = "mean", geom = "point") + stat_summary(fun.data = 
"mean_cl_normal", geom= "errorbar", width = 0.2) + labs(x = "Job", y = "Mean Income")+ 
stat_summary(fun.y = "mean", geom = "line", aes(group=1),colour = "Red", linetype = 
"dashed") 

 
The error line chart will look like this: 
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We can conclude that, on average, students earn less than lecturers, but the error bars tells 
us that the mean is a better representation of the population for students than for lecturers 
(there is more variability in lecturers’ income compared to students’). 

 
An error line chart showing the mean neuroticism for students and lecturers  
 
First create the plot object and define the variables that we want to plot as aesthetics: 
line <- ggplot(lecturerData, aes(job, neurotic)) 

As in the previous example, I have called the object line. The contents of this command 
specify the dataframe to be used (lecturerData) and set neuroticism to be plotted on the y-
axis (as it is the thing we have measured) and job to be plotted on the x-axis. 

Executing the command below will produce an error line graph of the mean neuroticism for 
students and lecturers. As before, the command uses stat_summary() to create the mean and 
another layer of stat_summary() to add an error bar to each group mean. The aesthetics are 
set so that the group means are connected with a red dashed line and error bars are set at a 
width of 0.2. Labels will be added to the x-axis (Job) and y-axis (Neuroticism): 

  

line + stat_summary(fun.y = "mean", geom =  "point") + stat_summary(fun.y = "mean", 
geom = "line", aes(group=1),colour = "Red", linetype = "dashed")+ 
stat_summary(fun.data = "mean_cl_normal", geom = "errorbar", width = 0.2) + labs(x = 
"Job", y = "Mean Neuroticism") 

The error line chart will look like this: 
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We can conclude that, on average, students are slightly less neurotic than lecturers. 
 

A scatterplot with regression lines of alcohol consumption and neuroticism grouped 
by lecturer/student. 
 
So, we want to see whether the relationship between neuroticism and alcohol was different 
for students and lecturers. To do this, we need to set group as an aesthetic. This is fairly 
straightforward. First, we define group as a colour aesthetic when we initiate the plot object: 

scatter <- ggplot(lecturerData, aes(neurotic, alcohol, colour = job)) 

The command below will produce a scatterplot with different coloured dots and regression 
lines for students and lecturers and confidence intervals on the regression lines coloured 
according to the job variable, complete with labels: 

scatter + geom_point() + geom_smooth(method = "lm", aes(fill = job), alpha = 0.1) + 
labs(x = "Neuroticism", y = "Alcohol Consumption", colour = "job") 

The scatterplot will look like this: 
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We can conclude that for lecturers, as neuroticism increases so does alcohol consumption (a 
positive relationship), but that for students the opposite is true, as neuroticism increases 
alcohol consumption decreases.  

 

Task 2 

• Using the infidelity.dat data from Chapter 3 (see Smart Alex’s Task 3), plot a 
clustered error bar chart of the mean number of bullets used against self and partner 
for males and females. 

Set your working directory to be the location of the data file. Then create a dataframe called 
Infidelity by executing the following command:  

infidelityData = read.delim("Infidelity Data.csv", header = TRUE) 

We need to create a variable that gives each case an id so that we have a unique identifier 
for the reshape command: 

infidelityData$id = row(infidelityData[1]) 

To create the new dataframe called Bullets, execute the following command: 

Bullets = reshape(infidelityData, idvar = c("id", "Gender"), varying = c("Partner", 
"Self"), v.names = "Number_of_Bullets", timevar = "Recipient", times = c(0:1), 
direction = "long") 

Within this command, we specify the data to be reshaped (infidelityData), the variables that 
remain constant for a participant (idvar = c("id", "Gender")), and the variables that vary for a 
participant (varying = c("Partner", "Self")). We need to name the variable that now contains 
the scores for each participant (v.names = "Number_of_Bullets") and the variable that 
represents the different recipient of the bullets (timevar = "Recipient"). Note that I have used 
timevar here because even though the number of bullets does not vary over time (they vary 
across recipient) the underlying principle is the same, i.e. using timevar will tell R that the 
number of bullets varies across recipient (partner and self). Finally, we specify the codes to 
be used to represent levels of the variable that represents the recipient of the bullets 
(recipients = c(0:1)) and we specify the direction of the reshape (direction = "long"). 

-10

0

10

20

30

40

10 15 20
Neuroticism

A
lc

oh
ol

 C
on

su
m

pt
io

n

job

lecturer

student



DISCOVERING STATISTICS USING R 

PROFESSOR ANDY P FIELD  19 

We can now change the newly created variable Recipient so that it is treated as a factor, 
and provide labels for the two levels of this variable: 

Bullets$Recipient<-factor(Bullets$Recipient, labels = c("Partner","Self")) 

We are now ready to plot the graph. As always, we first create the plot object and define the 
variables that we want to plot as aesthetics (remember that the new dataframe is called 
Bullets): 

bar <- ggplot(Bullets, aes(Recipient, Number_of_Bullets, fill = Gender)) 

As before, we can simply add the mean displayed as bars by adding a layer to ‘bar’ using 
stat_summary() command. However, there is one important difference: we have to specify 
position = “dodge” (see section 4.4.6 in the book) so that the male and female bars are forced 
to stand side-by-side, rather than behind each other.  

bar + stat_summary(fun.y = "mean", geom = "bar", position="dodge") 

As you probably know by now, fun.y = mean computes the mean for us and geom = “bar” 
displays these values as bars. If we want to add error bars we can again add these as a layer 
using stat_summary(). We can also specify labels for the axes using the labs() command and 
we can add a title for the legend by using fill = “Gender”: 

bar + stat_summary(fun.y = “mean”, geom = "bar", position="dodge") + 
stat_summary(fun.data = “mean_cl_normal”, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Recipient", y = "Number 
of Bullets", fill = "Gender") 

The resulting graph looks like this: 
 

 
The graph shows that, on average, males and females did not differ much in the number of 
bullets that they shot at the target when it had their partner’s face on it. However, men used 
fewer bullets than women when the target had their own face on it. 
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